Abbildungen der Seite
PDF
EPUB
[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][graphic]

ON THE CAUSES AND CURE OF SMOKY CHIMNIES.

TO DR. INGENHAUSZ.

DEAR FRIEND,

At sea, Aug. 28, 1785.

In one of your letters, a little before I left France, you desired me to give you in writing my thoughts upon the construction and use of chimnies, a subject you had sometimes heard me touch upon in conversation. I embrace willingly this leisure afforded by my present situation to comply with your request, as it will not only show my regard to the desires of a friend, but may at the same time be of some utility to others; the doctrine of chimnies appearing not to be as yet generally well understood, and mistakes respecting them being attended with constant inconvenience, if not remedied, and with fruitless expense, if the true remedies are mistaken.

Those who would be acquainted with this subject, should begin by considering on what principle smoke ascends in any chimney. At first, many are apt to think that smoke is in its nature and of itself specifically lighter than air, and rises in it for the same reason that cork rises in water. These see no cause why smoke should not rise in the chimney, though the room be ever so close. Others think there is a power in chimnies to draw up the smoke, and that there are different forms of chimnies which afford more or less of this power. These amuse themselves with searching for the best form. The equal dimensions of a funnel in its whole length is not thought artificial enough, and it is made, for fancied reasons, sometimes tapering and narrowing from below upwards, and sometimes the contrary, &c. A simple experiment or two may serve to give more correct ideas. Having lit a pipe of tobacco, plunge the stem to the bottom of a decanter half filled with cold water; then putting a rag over the bowl, blow through it and make the smoke descend in the stem of the pipe, from the end of which it will rise in bubbles through the water; and being thus cooled, will not afterwards rise to go out through the neck of the decanter, but remain spreading itself and resting on the surface of the water. This shows that smoke is really heavier than air, and that it is carried upwards only when attached to, or acted upon, by air that is heated, and thereby rarefied and rendered specifically lighter than the air in its neighborhood.

Smoke being rarely seen but in company with heated air, and its upward

motion being visible, though that of the rarefied air that drives it is not so, has naturally given rise to the error.

I need not explain to you, my learned friend, what is meant by rarefied air; but if you make the public use you propose of this letter, it may fall into the hands of some who are unacquainted with the term and with the thing. These then may be told, that air is a fluid which has weight as well as others, though about eight hundred times lighter than water. That heat makes the particles of air recede from each other and take up more space, so that the same weight of air heated will have more bulk, than equal weights of cold air which may surround it, and in that case must rise, being forced upwards by such colder and heavier air, which presses to get under it and take its place. That air is so rarefied or expanded by heat, may be proved to their comprehension, by a lank blown bladder, which, laid before a fire, will soon swell, grow tight, and burst.

Another experiment may be to take a glass tube about an inch in diameter, and twelve inches long, open at both ends and fixed upright on legs, so that it need not be handled, for the hands might warm it. At the end of a quill fasten five or six inches of the finest light filament of silk, so that it may be held either above the upper end of the tube or under the lower end, your warm hand being at a distance by the length of the quill. (See the plate, fig. 1.) If there were any motion of air through the tube, it would manifest itself by its effect on the silk; but if the tube and the air in it are of the same temperature with the surrounding air, there will be no such motion, whatever may be the form of the tube, whether crooked or strait, narrow below and widening upwards, or the contrary; the air in it will be quiescent. Warm the tube, and you will find, as long as it continues warm, a constant current of air entering below and passing up through it, till discharged at the top; because the warmth of the tube being communicated to the air it contains, rarefies that air and makes it lighter than the air without, which therefore presses in below, forces it upwards, and follows and takes its place, and is rarefied in its turn. And, without warming the tube, if you hold under it a knob of hot iron, the air thereby heated will rise and fill the tube, going out at its top; and this motion in the tube will continue as long as the knob remains hot, because the air entering the tube below is heated and rarefied by passing near and over that knob.

That this motion is produced merely y the difference of specific gravity

between the fluid within and that without the tube, and not by any fancied form of the tube itself, may appear by plunging it into water contained in a glass jar a foot deep, through which such motion might be seen. The water within and without the tube being of the same specific gravity, balance each other, and both remain at rest. But take out the tube, stop its bottom with a finger, and fill it with olive oil, which is lighter than water, then stopping the top, place it as before, its lower end under water, its top a very little above: as long as you keep the bottom stopt the fluids remain at rest, but the moment it is unstopt, the heavier enters below, forces up the lighter, and takes its place. And the motion then ceases, merely because the new fluid cannot be successively made lighter, as air may be by a warm tube.

In fact, no form of the funnel of a chimney has any share in its operation or effect respecting smoke, except its height. The longer the funnel, if erect, the greater its force when filled with heated and rarefied air, to draw in below and drive up the smoke, if one may, in compliance with custom, use the expression draw, when in fact it is the superior weight of the surrounding atmosphere that presses to enter the funnel below, and so drives up before it the smoke and warm air it meets with in its passage.

I have been the more particular in explaining these first principles, because, for want of clear ideas respecting them, much fruitless expense has been occasioned; not only single chimnies, but in some instances within my knowledge, whole stacks having been pulled down and rebuilt with funnels of different forms, imagined more powerful in drawing smoke; but having still the same height and the same opening below, have performed no better than their predecessors.

What is it then which makes a smoky chimney, that is, a chimney which, instead of conveying up all the smoke, discharges a part of it into the room, offending the eyes and damaging the furniture?

The causes of this effect, which have fallen under my observation, amount to nine, differing from each other, and therefore requiring different remedies.

1. Smoky chimnies in a new house, are such, frequently from mere want of air. The workmanship of the rooms being all good, and just out of the workman's. hand, the joints of the boards of the flooring, and of the pannels of wainscotting are all true and tight, the more so as the walls, perhaps not yet thoroughly dry, preserve a dampness in the air of the room which keeps the wood-work swelled and close. The doors and the sashes, too, being worked with 3 P

VOL. III.

« ZurückWeiter »