Abbildungen der Seite
PDF
EPUB

This prevention I would thus endeavour to explain.

There seems to be no natural repulsion between water and air, such as to keep them from coming into contact with each other.Hence we find a quantity of air in water; and if we extract it by means of the air-pump the same water, again exposed to the air, will soon imbibe an equal quantity.

Therefore air in motion, which is wind, in passing over the smooth surface of water, may rub, as it were, upon that surface, and raise it into wrinkles, which if the wind continues, are the elements of future waves.

The smallest wave once raised does not immediately subside, and leave the neighbouring water quiet: but in subsiding raises nearly as much of the water next to it, the friction of the parts making little difference. Thus a stone dropped in a pool raises first a single wave round itself; and leaves it, by sinking to the bottom; but that first wave subsiding raises a second, the second a third, and so on in circles to a great extent.

A small power continually operating will produce a great action. A finger applied to a weighty suspended bell can at first move it but little; if repeatedly applied, though with no greater strength, the motion increases till the bell swings to its utmost height, and with a force that cannot be resisted by the whole strength of the arm and body. Thus the small first raised waves, being continually acted upon by the wind, are, though the wind does not increase in strength, continually increased in magnitude, rising highly and extending their bases, so as to include a vast mass of water in each wave, which in its motion acts with great violence.

But if there be a mutual repulsion between the particles of oil, and no attraction between oil and water, oil dropped on water will not be held together by adhesion to the spot whereon it falls; it will not be imbibed by the water; it will be at liberty to expand itself; and it will spread on a surface that, besides being smooth to the most perfect degree of polish, prevents, perhaps by repelling the oil, all immediate contact, keeping it at a minute distance from itself: and the expansion will continue till the mutual repulsion between the particles of the oil is weakened and reduced to nothing by their distance.

Now I imagine that the wind, blowing over water thus covered with a film of oil, cannot easily catch upon it, so as to raise the first wrinkles, but slides over it, and leaves it smooth as it finds it. It moves a little the oil indeed, which being between it and the water, serves it to slide with, and prevents friction, as oil does between those parts of a machine, that would otherwise rub hard together. Hence the oil dropped on the windward side of a pond proceeds gradually to lee

ward, as may be seen by the smoothness it carries with it, quite to the opposite side. For the wind being thus prevented from raising the first wrinkles, that I call the elements of waves, cannot produce waves, which are to be made by continually acting upon, and enlarging those elements, and thus the whole pond is calmed.

Totally therefore we might suppress the waves in any required place, if we could come at the windward place where they take their rise. This in the ocean can seldom if ever be done. But perhaps something may be done on particular occasions, to moderate the violence of the waves when we are in the midst of them, and prevent their breaking where that would be inconvenient.

For when the wind blows fresh, there are continually rising on the back of every great wave a number of small ones, which roughen its surface, and give the wind hold, as it were, to push it with greater force. This hold is diminished, by preventing the generation of those small ones. And possibly too, when a wave's surface is oiled, the wind in passing over it, may rather in some degree press it down, and contribute to prevent it rising again, instead of promoting it.

This as mere conjecture would have little weight, if the apparent effects of pouring oil into the midst of waves were not considerable, and as yet not otherwise accounted for.

When the wind blows so fresh, as that the waves are not sufficiently quick in obeying its impulse, their tops being thinner and lighter are pushed forward, broken, and turned over in a white foam. Common waves lift a vessel without entering it; but these when large sometimes break above and pour over it, doing great damage.

That this effect might in any degree be prevented, or the height and violence of waves in the sea moderated, we had no certain account; Pliny's authority for the practice of seamen in his time being slighted. But discoursing lately on this subject with his excellency count Bentinck, of Holland, his son the honourable captain Bentinck, and the learned professor Allemand (to all whom I showed the experiment of smoothing in a windy day the large piece of water at the head of the Green Park) a letter was mentioned, which had been received by the count from Batavia, relative to the saving of a Dutch ship in a storm by pouring oil into the sea. I much desired to see that letter, and a copy of it was promised me, which I afterward received.

Mr. Tengnagel to Count Bentinck.

BATAVIA, January 5, 1770. NEAR the islands Paul and Amsterdam, we met with a storm, which had nothing particular in it worthy of being communicated

to you, except that the captain found himself obliged for greater safety in wearing the ship, to pour oil into the sea, to prevent the waves breaking over her, which had an excellent effect, and succeeded in preserving us. As he poured out but a little at a time, the East India Company owes perhaps its ship to only six demi-ames of olive-oil. I was present upon deck when this was done; and I should not have mentioned this circumstance to you, but that we have found people here so prejudiced against the experiment, as to make it necessary for the officers on board and myself to give a certificate of the truth on this head, of which we made no difficulty.

periment had not, in the main point, the success we wished, for no material difference was observed in the height or force of the surf upon the shore; but those who were in the long-boat could observe a tract of smooth water, the whole of the distance in which the barge poured the oil, and gradually spreading in breadth towards the long-boat. I call it smoothed, not that it was laid level; but because, though the swell continued, its surface was not roughened by the wrinkles, or smaller waves, before-mentioned; and none or very few white caps (or waves whose tops turn over in foam) appeared in that whole space, though to windward and leeward of it there were plenty; and a wherry, that came round the point under sail, in her way to Portsmouth, seemed to turn into that tract of choice, and to use from end to end, as a piece of turnpike-road.

It may be of use to relate the circumstances of an experiment that does not succeed, since they may give hints of amendment in future trials: it is therefore I have been thus particular. I shall only add what I apprehend may have been the reason of our disappointment.

On this occasion, I mentioned to captain Bentinck, a thought which had occurred to me in reading the voyages of our late circumnavigators, particularly where accounts are given of pleasant and fertile islands which they much desired to land upon, when sickness made it more necessary, but could not effect a landing through a violent surf breaking on the shore, which rendered it impracticable. My idea was, that possibly by sailing to and fro at some distance from such lee-shore, continually pouring oil into the sea, the waves might be so much depressed, and lessened be- I conceive, that the operation of oil on wafore they reached the shore, as to abate the ter is, first, to prevent the raising of new height and violence of the surf, and permit a waves by the wind; and, secondly, to prelanding; which, in such circumstances, was vent its pushing those before raised with such a point of sufficient importance to justify the force, and consequently their continuance of expense of the oil that might be requisite for the same repeated height, as they would have the purpose. That gentleman, who is ever done, if their surface were not oiled. But ready to promote what may be of public utili- oil will not prevent waves being raised by ty, though his own ingenious inventions have another power, by a stone, for instance, fallnot always met with the countenance they ing into a still pool; for they then rise by the merited, was so obliging as to invite me to mechanical impulse of the stone, which the Portsmouth, where an opportunity would pro- greasiness on the surrounding water cannot bably offer, in the course of a few days, of lessen or prevent, as it can prevent the winds making the experiment on some of the shores catching the surface and raising it into waves. about Spithead, in which he kindly proposed Now waves once raised, whether by the to accompany me, and to give assistance with wind or any other power, have the same mesuch boats as might be necessary. Accord- chanical operation, by which they continue to ingly, about the middle of October last, I rise and fall, as a pendulum will continue to went with some friends to Portsmouth; and swing, a long time after the force ceases to a day of wind happening, which made a lee- act by which the motion was first produced: shore between Hasler-hospital and the point that motion will, however, cease in time; but near Jillkecker, we went from the Centaur time is necessary. Therefore, though oil with the long-boat and barge towards that spread on an agitated sea may weaken the shore. Our disposition was this: the long-push of the wind on those waves whose surboat was anchored about a quarter of a mile from the shore; part of the company were landed behind the point (a place more sheltered from the sea) who came round and placed themselves opposite to the long boat, where they might observe the surf, and note if any change occurred in it upon using the oil. Another party, in the barge, plied to windward of the long boat, as far from her as she was from the shore, making trips of about half a mile each, pouring oil continually out of a large stone bottle, through a hole in the cork, somewhat bigger than a goose-quill. The ex

faces are covered by it, and so, by receiving fresh impulse, they may gradually subside; yet a considerable time, or a distance through which they will take time to move, may be necessary to make the effect sensible on any shore in a diminution of the surf: for we know, that when wind ceases suddenly, the waves it has raised do not as suddenly subside, but settle gradually, and are not quite down till after the wind has ceased. So though we should, by oiling them, take off the effect of wind on waves already raised, it is not to be expected that those waves should be

instantly levelled. The motion they have received, will for some time continue; and if the shore is not far distant, they arrive there so soon, that their effect upon it will not be visibly diminished. Possibly, therefore, if we had begun our operations at a greater distance, the effect might have been more sensible. And perhaps we did not pour oil in sufficient quantity. Future experiments may determine this.

I was, however, greatly obliged to captain Bentinck, for the cheerful and ready aids he gave me and I ought not to omit mentioning Mr. Banks, Dr. Solander, general Carnac, and Dr. Blagden, who all assisted at the experiment, during that blustering unpleasant day, with a patience and activity that could only be inspired by a zeal for the improvement of knowledge, such especially as might possibly be of use to men in situations of distress.

I would wish you to communicate this to your ingenious friend, Mr. Farish, with my respects; and believe me to be, with sincere esteem, B. FRANKLIN.

To Peter Collinson, London.

Electrical Kite.

PHILADELPHIA, Oct. 16, 1752. As frequent mention is made in public papers from Europe of the success of the Philadelphia experiment for drawing the electric fire from clouds by means of pointed rods of iron erected on high buildings, &c. it may be agreeable to the curious to be informed that the same experiment has succeeded in Philadelphia, though made in a different and more easy manner, which is as follows:

Make a small cross of two light strips of cedar, the arms so long as to reach to the four corners of a large thin silk handkerchief when extended; tie the corners of the handkerchief to the extremities of the cross, so you have the body of a kite; which being properly accommodated with a tail, loop, and string, will rise in the air, like those made of paper; but this being of silk is fitter to bear the wet and wind of a thunder gust without tearing. To the top of the upright stick of the cross is to be fixed a very sharp pointed wire, rising a foot or more above the wood. To the end of the twine, next the hand, is to be tied a silk ribbon, and where the silk and twine join, a key may be fastened. This kite is to be raised when a thunder-gust appears to be coming on, and the person who holds the string must stand within a door or window, or under some cover, so that the silk ribbon may not be wet; and care must be taken that the twine does not touch the frame of the door or window. As soon as any of the thunder clouds come over the kite, the pointed wire will draw the electric fire from them, and the kite, with all

the twine, will be electrified, and the loose filaments of the twine will stand out every way, and be attracted by an approaching finger. And when the rain has wetted the kite and twine, so that it can conduct the electric fire freely, you will find it stream out plentifully from the key on the approach of your knuckle. At this key the phial may be charged; and from electric fire thus obtained, spirits may be kindled, and all the other electric experiments be performed, which are usually done by the help of a rubbed glass globe or tube, and thereby the sameness of the electric matter with that of lightning completely demonstrated. B. FRANKLIN.

To the same.

Hypothesis, of the Sea being the grand source of Lightning, retracted. Positive, and sometimes negative, Electricity of the Clouds discovered.-New Experiments and Conjectures in support of this Discovery.-Observations recommended for ascertaining the Direction of the electric Fluid.-Size of Rods for Conductors to Buildings.-Appearance of a Thunder-cloud described.

PHILADELPHIA, September, 1753.

In my former paper on this subject, written first in 1747, enlarged and sent to England in 1749, I considered the sea as the grand source of lightning, imagining its luminous appear. ance to be owing to electric fire produced by friction between the particles of water and those of salt. Living far from the sea, I had then no opportunity of making experiments on the sea water, and so embraced this opinion too hastily.

For in 1750, and 1751, being occasionally on the sea-coast, I found by experiments, that sea-water in a bottle, though at first it would by agitation appear luminous, yet in a few hours it lost that virtue: hence and from this, that I could not by agitating a solution of seasalt in water produce any light, I first began to doubt of my former hypothesis, and to suspect that the luminous appearance in sea-water must be owing to some other principles.

I then considered whether it were not possible, that the particles of air, being electrics per se, might, in hard gales of wind, by their friction against trees, hills, buildings, &c. as so many minute electric globes, rubbing against non-electric cushions, draw the electric fire from the earth, and that the rising vapours might receive the fire from the air, and by such means the clouds become electrified.

If this were so, I imagined that by forcing a constant violent stream of air against my prime conductor, by bellows, I should electrify it negatively; the rubbing particles of air, drawing from it part of its natural quantity of the electric fluid. I accordingly made the experiment, but it did not succeed.

In September 1752, I erected an iron rod to draw the lightning down into my house, in order to make some experiments on it, with two bells to give notice when the rod should be electrified; a contrivance obvious to every electrician.

I found the bells rang sometimes when there was no lightning or thunder, but only a dark cloud over the rod; that sometimes after a flash of lightning they would suddenly stop; and at other times, when they had not rang before, they would, after a flash, suddenly begin to ring; that the electricity was sometimes very faint, so that when a small spark was obtained, another could not be got for some time after; at other times the sparks would follow extremely quick, and once I had a continual stream from bell to bell, the size of a crow quill: even during the same gust there were considerable variations.

In the winter following I conceived an experiment, to try whether the clouds were electrified positively or negatively; but my pointed rod, with its apparatus, becoming out of order, I did not refit it till towards the spring, when I expected the warm weather would bring on more frequent thunder-clouds. The experiment was this: to take two phials; charge one of them with lightning from the iron rod, and give the other an equal charge by the electric glass globe, through the prime conductor: when charged, to place them on a table within three or four inches of each other, a small cork ball being suspended by a fine silk thread from the ceiling, so as it might play between the wires. If both bottles then were electrified positively, the ball being attracted and repelled by one, must be also repelled by the other. If the one positively, and the other negatively; then the ball would be attracted and repelled alternately by each, and continue to play between them as long as any considerable charge remained.

Being very intent on making this experiment, it was no small mortification to me, that I happened to be abroad during two of the greatest thunder-storms we had early in the spring, and though I had given orders in my family, that if the bells rang when I was from home, they should catch some of the lightning for me in electrical phials, and they did so, yet it was mostly dissipated before my return, and in some of the other gusts, the quantity of lightning I was able to obtain was so small, and the charge so weak, that I could not satisfy myself: yet I sometimes saw what heightened my suspicions, and inflamed my curiosity.

At last, on the 12th of April, 1753, there being a smart gust of some continuance, I charged one phial pretty well with lightning, and the other equally, as near as I could judge, with electricity from my glass globe;

and, having placed them properly, I beheld, with great surprise and pleasure, the cork ball play briskly between them; and was convinced that one bottle was electrised negatively.

I repeated this experiment several times during the gust, and in eight succeeding gusts, always with the same success; and being of opinion (for reasons I formerly gave in my letter to Mr. Kinnersley, since printed in London) that the glass globe electrises positively, I concluded that the clouds are always electrised negatively, or have always in them less than their natural quantity of the electric fluid.

Yet notwithstanding so many experiments, it seems I concluded too soon; for at last, June the 6th, in a gust which continued from five o'clock, P. M. to seven, I met with one cloud that was electrised positively, though several that passed over my rod before, during the same gust, were in the negative state. This was thus discovered.

I had another concurring experiment, which I often repeated, to prove the negative state of the clouds, viz. while the bells were ringing, I took the phial charged from the glass globe, and applied its wire to the erected rod, considering, that if the clouds were electrised positively, the rod which received its electricity from them must be so too; and then the additional positive electricity of the phial would make the bells ring faster :-but, if the clouds were in a negative state, they must exhaust the electric fluid from my rod, and bring that into the same negative state with themselves, and then the wire of a positively charged phial, supplying the rod with what it wanted (which it was obliged otherwise to draw from the earth by means of the pendulous brass ball playing between the two bells) the ringing would cease till the bottle was discharged.

In this manner I quite discharged into the rod several phials, that were charged from the glass globe, the electric fluid streaming from the wire to the rod, till the wire would receive no spark from the finger; and, during this supply, to the rod from the phial, the bells stopped ringing; but by continuing the application of the phial wire to the rod, I exhausted the natural quantity from the inside surface of the same phials, or, as I call it, charged them negatively.

At length, while I was charging a phial by my glass globe, to repeat this experiment, my bells, of themselves, stopped ringing, and after some pause, began to ring again.-But now, when I approached the wire of the charged phial to the rod, instead of the usual stream that I expected from the wire to the rod, there was no spark; not even when I brought the wire and the rod to touch; yet the bells continued ringing vigorously, which proved to me, that the rod was then positively

electrified, as well as the wire of the phial, and equally so; and consequently, that the particular cloud then over the rod was in the same positive state. This was near the end of the gust.

But this was a single experiment, which, however, destroys my first too general conclusion, and reduces me to this: That the clouds of a thunder-gust are most commonly in a negative state of electricity, but sometimes in a positive state.

The latter I believe is rare; for though 1 soon after the last experiment set out on a journey to Boston, and was from home most part of the summer, which prevented my making farther trials and observations; yet Mr. Kinnersley returning from the islands just as I left home, pursued the experiments during my absence, and informs me that he always found the clouds in the negative state. So that, for the most part, in thunderstrokes, it is the earth that strikes into the clouds, and not the clouds that strike into the earth.

Those who are versed in electric experiments, will easily conceive, that the effects and appearances must be nearly the same in either case; the same explosion, and the same flash between one cloud and another, and between the clouds and mountains, &c. the same rending of trees, walls, &c. which the electric fluid meets with in its passage, and the same fatal shock to animal bodies; and that pointed rods fixed on buildings, or masts of ships, and communicating with the earth or sea, must be of the same service in restoring the equilibrium silently between the earth and clouds, or in conducting a flash or stroke, if one should be, so as to save harmless the house or vessel: for points have equal power to throw off, as to draw on the electric fire, and rods will conduct up as well as down.

But though the light gained from these experiments makes no alteration in the practice, it makes a considerable one in the theory. And now we as much need an hypothesis to explain by what means the clouds become negatively, as before to show how they became positively electrified.

I cannot forbear venturing some few conjectures on this occasion; they are what occur to me at present, and though future discoveries should prove them not wholly right, yet they may in the mean time be of some use, by stirring up the curious to make more experiments, and occasion more exact disquisitions.

I conceive then, that this globe of earth and water, with its plants, animals, and buildings, have diffused throughout their substance, a quantity of the electric fluid, just as much as they can contain, which I call the natural quantity.

That this natural quantity is not the same in all kinds of common matter under the same dimensions, nor in the same kind of common matter in all circumstances; but a solid foot, for instance, of one kind of common matter, may contain more of the electric fluid than a solid foot of some other kind of common matter; and a pound weight of the same kind of common matter may, when in a rarer state, contain more of the electric fluid than when in a denser state.

For the electric fluid, being attracted by any portion of common matter, the parts of that fluid, (which have among themselves a mutual repulsion) are brought so near to each other by the attraction of the common matter that absorbs them, as that their repulsion is equal to the condensing power of attraction in common matter; and then such portion of common matter will absorb no more.

Bodies of different kinds having thus attracted and absorbed what I call ther natural quantity, i. e. just as much of the electric fluid as is suited to their circumstances of density, rarity, and power of attracting, do not then show any signs of electricity among each other.

And if more electric fluid be added to one of these bodies, it does not enter, but spreads on the surface, forming an atmosphere; and then such body shows signs of electricity.

I have in a former paper compared common matter to a sponge, and the electric fluid to water: I beg leave once more to make use of the same comparison, to illustrate farther my meaning in this particular.

When a sponge is somewhat condensed by being squeezed between the fingers, it will not receive and retain so much water as when in its more loose and open state.

If more squeezed and condensed, some of the water will come out of its inner parts, and flow on the surface.

If the pressure of the fingers be entirely removed, the sponge will not only resume what was lately forced out, but attract an additional quantity.

As the sponge in its rarer state will naturally attract and absorb more water, and in its denser state will naturally attract and absorb less water; we may call the quantity it attracts and absorbs in either state, its natural quantity, the state being considered.

Now what the sponge is to water, the same is water to the electric fluid.

When a portion of water is in its common dense state, it can hold no more electric fluid than it has: if any be added, it spreads on the surface.

When the same portion of water is rarified into vapour, and forms a cloud, it is then capable of receiving and absorbing a much greater quantity; there is room for each particle to have an electric atmosphere.

« ZurückWeiter »