Abbildungen der Seite
PDF
EPUB

Every particle of air, therefore, will bear any load inferior to the force of these repulsions.

Hence the support of fogs, mists, clouds.

Very warm air, clear, though supporting a very great quantity of moisture, will grow turbid and cloudy on the mixture of colder air, as foggy, turbid air will grow clear by warming.

Thus the sun, shining on a morning fog, dissipates it; clouds are seen to waste in a sunshiny day.

But cold condenses and renders visible the vapour: a tankard or decanter filled with cold water will condense the moisture of warm, clear air on its outside, where it becomes visible as dew, coalesces into drops, descends in little streams.

The sun heats the air of our atmosphere most near the surface of the earth; for there, besides the direct rays, there are many reflections. Moreover, the earth itself, being heated, communicates of its heat to the neighbouring air.

The higher regions, having only the direct rays of the sun passing through them, are comparatively very cold. Hence the cold air on the tops of mountains, and snow on some of them all the year, even in the torrid zone. Hence hail in summer.

If the atmosphere were, all of it (both above and below), always of the same temper as to cold or heat, then the upper air would always be rarer than the lower, because the pressure on it is less; consequently lighter, and, therefore, would keep its place.

But the upper air may be more condensed by cold than the lower air by pressure; the lower more expanded by heat than the upper for want of pressure. In such case the upper air will become the heavier, the lower the lighter.

The lower region of air being heated and expand ed, heaves up and supports for some time the colder, heavier air above, and will continue to support it while the equilibrium is kept. Thus water is

[ocr errors]

supported in an inverted open glass, while the equilibrium is maintained by the equal pressure upward of the air below; but the equilibrium by any means breaking, the water descends on the heavier side, and the air rises into its place.

The lifted heavy cold air over a heated country, becoming by any means unequally supported or unequal in its weight, the heaviest part descends first, and the rest follows impetuously. Hence gusts after heats, and hurricanes in hot climates. Hence the air of gusts and hurricanes is cold, though in hot climates and seasons; it coming from above.

The cold air descending from above, as it penetrates our warm region full of watery particles, condenses them, renders them visible, forms a cloud thick and dark, overcasting sometimes, at once, large and extensive; sometimes, when seen at a distance, small at first, gradually increasing; the cold edge or surface of the cloud condensing the vapours next it, which form smaller clouds that join it, increase its bulk, it descends with the wind and its acquired weight, draws nearer the earth, grows denser with continual additions of water, and discharges heavy showers.

Small black clouds thus appearing in a clear sky, in hot climates portend storms, and warn seamen to hand their sails.

The earth turning on its axis in about twentyfour hours, the equatorial parts must move about fifteen miles in each minute; in northern and southern latitudes this motion is gradually less to the poles, and there nothing.

If there was a general calm over the face of the globe, it must be by the air's moving in every part as fast as the earth or sea it covers.

*

The air under the equator and between the tropics being constantly heated and rarefied by the sun, rises. Its place is supplied by air from northern

and southern latitudes, which, coming from parts wherein the earth and air had less motion, and not suddenly acquiring the quicker motion of the equatorial earth, appears an east wind blowing westward; the earth moving from west to east, and slipping under the air.*

Thus, when we ride in a calm, it seems a wind against us: if we ride with the wind, and faster, even that will seem a small wind against us.

The air rarefied between the tropics, and rising, must flow in the higher region north and south. Before it rose it had acquired the greatest motion the earth's rotation could give it. It retains some degree of this motion, and descending in higher latitudes, where the earth's motion is less, will appear a westerly wind, yet tending towards the equatorial parts, to supply the vacancy occasioned by the air of the lower regions flowing thitherward.

Hence our general cold winds are about northwest, our summer cold gusts the same.

The air in sultry weather, though not cloudy, has a kind of haziness in it, which makes objects at a distance appear dull and indistinct. This haziness is occasioned by the great quantity of moisture equally diffused in that air. When, by the cold wind blowing down among it, it is condensed into clouds, and falls in rain, the air becomes purer and clearer. Hence, after gusts, distant objects appear distinct, their figures sharply terminated.

Extreme cold winds congeal the surface of the earth by carrying off its fire. Warm winds afterward blowing over that frozen surface will be chilled by it. Could that frozen surface be turned under, and warmer turned up from beneath it, those warm winds would not be chilled so much.

The surface of the earth is also sometimes much

See a paper on this subject, by the late ingenious Mr. Hadley, in the Philadelphia Transactions, wherein this hypothesis of explaining the tradewinds first appeared.

heated by the sun and such heated surface, not be ing changed, heats the air that moves over it.

Seas, lakes, and great bodies of water, agitated by the winds, continually change surfaces; the cold surface in winter is turned under by the rolling of the waves, and a warmer turned up; in summer the warm is turned under, and colder turned up. Hence the more equal temper of seawater, and the air over it. Hence, in winter, winds from the sea seem warm, winds from the land cold. In summer the contrary.

Therefore the lakes northwest of us,* as they are not so much frozen, nor so apt to freeze as the earth, rather moderate than increase the coldness of our winter winds.

The air over the sea being warmer, and, therefore, lighter in winter than the air over the frozen land, may be another cause of our general northwest winds, which blow off to sea at right angles from our North American coast. The warm, light seaair rising, the heavy, cold land-air pressing into its place.

Heavy fluids, descending, frequently form eddies or whirlpools, as is seen in a funnel, where the water acquires a circular motion, receding every way from a centre, and leaving a vacancy in the middle, greatest above, and lessening downward, like a speaking-trumpet, its big end upward.

Air, descending or ascending, may form the same kind of eddies or whirlings, the parts of air acquiring a circular motion, and receding from the middle of the circle by a centrifugal force, and leaving there a vacancy; if descending, greatest above and lessening downward; if ascending, greatest below and lessening upward; like a speaking-trumpet standing its big end on the ground.

When the air descends with a violence in some

* In Pennsylvania.

places, it may rise with equal violence in others, and form both kinds of whirlwinds.

The air, in its whirling motion, receding every way from the centre or axis of the trumpet, leaves there a vacuum, which cannot be filled through the sides, the whirling air, as an arch, preventing; it must then press in at the open ends.

The greatest pressure inward must be at the lower end, the greatest weight of the surrounding atmosphere being there. The air, entering, rises within, and carries up dust, leaves, and even heavier bodies that happen in its way, as the eddy or whirl passes over land.

If it passes over water, the weight of the surrounding atmosphere forces up the water into the vacuity, part of which, by degrees, joins with the whirling air, and, adding weight and receiving accelerated motion, recedes farther from the centre or axis of the trump as the pressure lessens; and at last, as the trump widens, is broken into small particles, and so united with air as to be supported by it, and become black clouds at the top of the trump.

Thus these eddies may be whirlwinds at land, water-spouts at sea. A body of water so raised may be suddenly let fall, when the motion, &c., has not strength to support it, or the whirling arch is broken so as to admit the air: falling in the sea, it is harmless unless ships happen under it; and if in the progressive motion of the whirl it has moved from the sea over the land, and then breaks, sudden, violent, and mischievous torrents are the consequences.

« ZurückWeiter »