Abbildungen der Seite

spires of churches, become sometimes conductors between the clouds and the earth; but, not being good ones, that is, not conveying the fluid freely, they are often damaged.

Buildings that have their roofs covered with lead, or other metal, and spouts of metal continued from the roof into the ground to carry off the water, are never hurt by lightning, as, whenever it falls on such a building, it passes in the metals and not in the walls.

When other buildings happen to be within the striking distance from such clouds, the fluid passes in the walls, whether of wood, brick, or stone, quitting the walls only when it can find better conductors near them, as metal rods, bolts, and hinges of windows or doors, gilding on wainscot, or frames of pictures, the silvering on the backs of looking-glasses, the wires for bells, and the bodies of animals, as containing watery fluids. And in passing through the house it follows the direction of these conductors, taking as many in its way as can assist it in its passage, whether in a straight or crooked line, leaping from one to the other, if not far distant from each other, only rending the wall in the spaces where these partial good conductors are too distant from each other.

An iron rod being placed on the outside of a building, from the highest part continued down into the moist earth, in any direction, straight or crooked, following the form of the roof or other parts of the building, will receive the lightning at its upper end, attracting it so as to prevent its striking any other part; and, affording it a good conveyance into the earth, will prevent its damaging any part of the building.

A small quantity of metal is found able to conduct a great quantity of this fluid. A wire no bigger than a goose quill has been known to conduct (with safety to

the building as far as the wire was continued) a quantity of lightning that did prodigious damage both above and below it; and probably larger rods are not necessary, though it is common in America to make them of half an inch, some of three quarters, or an inch diameter.

The rod may be fastened to the wall, chimney, &c., with staples of iron. The lightning will not leave the rod (a good conductor) to pass into the wall (a bad conductor) through those staples. It would rather, if any were in the wall, pass out of it into the rod, to get more readily by that conductor into the earth.

If the building be very large and extensive, two or more rods may be placed at different parts, for greater security.

Small ragged parts of clouds, suspended in the air between the great body of clouds and the earth (like leaf gold in electrical experiments), often serve as partial conductors for the lightning, which proceeds from one of them to another, and by their help comes within the striking distance to the earth or a building. It therefore strikes, through those conductors, a building that would otherwise be out of the striking distance.

Long, sharp points communicating with the earth, and presented to such parts of clouds, drawing silently from them the fluid they are charged with, they are then attracted to the cloud, and may leave the distance so great as to be beyond the reach of striking.

It is therefore that we elevate the upper end of the rod six or eight feet above the highest part of the building, tapering it gradually to a fine sharp point, which is gilt to prevent its rusting.

Thus the pointed rod either prevents a stroke from the cloud, or, if a stroke is made, conducts it to the earth with safety to the building.

[blocks in formation]

The lower end of the rod should enter the earth so deep as to come at the moist part, perhaps two or three feet; and, if bent when under the surface so as to go in a horizontal line six or eight feet from the wall, and then bent again downwards three or four feet, it will prevent damage to any of the stones of the foundation.

A person apprehensive of danger from lightning, happening during the time of thunder to be in a house not so secured, will do well to avoid sitting near the chimney, near a looking-glass, or any gilt pictures or wainscot; the safest place is in the middle of the room (so it be not under a metal lustre suspended by a chain), sitting in one chair and laying the feet up in another. It is still safer to bring two or three mattresses or beds into the middle of the room, and, folding them up double, place the chair upon them; for they not being so good conductors as the walls, the lightning will not choose an interrupted course through the air of the room and the bedding, when it can go through a continued better conductor, the walls. But, where it can be had, a hammock or swinging bed, suspended by silk cords equally distant from the walls on every side, and from the ceiling and floor above and below, affords the safest situation a person can have in any room whatever; and what, indeed, may be deemed quite free from danger of any stroke by lightning.



St. Bride's Steeple.

Cambridge, 6 January, 1768.

I HAVE read in the Philosophical Transactions the account of the effects of lightning on St. Bride's steeple. It is amazing to me, that, after the full demonstration you had given, of the identity of lightning and of electricity, and the power of metalline conductors, they should ever think of repairing that steeple without such conductors. How astonishing is the force of prejudice, even in an age of so much knowledge and free inquiry!


On Conductors for protecting Houses from Lightning.· Singular Kind of Glass Tube.


London, 2 July, 1768.

You must needs think the time long that your instruments have been in hand. Sundry circumstances have occasioned the delay. Mr. Short, who undertook to make the telescope, was long in a bad state of health, and much in the country for the benefit of the air. He however at length finished the material parts that required his own hand, and waited only for something about the mounting, that was to have been done by another workman; when he was removed by death. I have put in my claim to the instrument, and shall obtain it from the executors as soon as his affairs can be

settled. It is now become much more valuable than it would have been if he had lived, as he excelled all others in that branch. The price agreed for was one hundred pounds.

The equal altitudes and transit instrument was undertaken by Mr. Bird, who doing all his work with his own hands for the sake of greater truth and exactness, one must have patience that expects any thing from him. He is so singularly eminent in his way, that the commissioners of longitude have lately given him five hundred pounds merely to discover and make public his method of dividing instruments. I send it you herewith. But what has made him longer in producing your instrument is, the great and hasty demand on him from France and Russia, and our Society here, for instruments to go to different parts of the world for observing the next transit of Venus; some to be used in Siberia, some for the observers that go to the South Seas, some for those that go to Hudson's Bay. These are now all completed, and mostly gone, it being necessary, on account of the distance, that they should go this year to be ready on the spot in time. And now, he tells me, he can finish yours, and that I shall have it next week. Possibly he may keep his word. But we are not to wonder if he does not.

Mr. Martin, when I called to see his panopticon, had not one ready; but was to let me know when he should have one to show me. I have not since heard from him, but will call again.

Mr. Maskelyne wishes much that some of the governments in North America would send an astronomer to Lake Superior, to observe this transit. I know no one of them likely to have a spirit for such an undertaking, unless it be the Massachusetts, or that have a person and instruments suitable. He presents you one

« ZurückWeiter »