Laser Cooling and Trapping

Cover
Springer Science & Business Media, 1999 - 323 Seiten
I Introduction.- 1 Review of Quantum Mechanics.- 1.1 Time-Dependent Perturbation Theory.- 1.2 The Rabi Two-Level Problem.- 1.2.1 Light Shifts.- 1.2.2 The Dressed Atom Picture.- 1.2.3 The Bloch Vector.- 1.2.4 Adiabatic Rapid Passage.- 1.3 Excited-State Decay and its Effects.- 2 The Density Matrix.- 2.1 Basic Concepts.- 2.2 Spontaneous Emission.- 2.3 The Optical Bloch Equations.- 2.4 Power Broadening and Saturation.- 3 Force on Two-Level Atoms.- 3.1 Laser Light Pressure.- 3.2 A Two-Level Atom at Rest.- 3.3 Atoms in Motion.- 3.3.1 Traveling Wave.- 3.3.2 Standing Wave.- 4 Multilevel Atoms.- 4.1 Alkali-Metal Atoms.- 4.2 Metastable Noble Gas Atoms.- 4.3 Polarization and Interference.- 4.4 Angular Momentum and Selection Rules.- 4.5 Optical Transitions in Multilevel Atoms.- 4.5.1 Introduction.- 4.5.2 Radial Part.- 4.5.3 Angular Part of the Dipole Matrix Element.- 4.5.4 Fine and Hyperfine Interactions.- 5 General Properties Concerning Laser Cooling.- 5.1 Temperature and Thermodynamics in Laser Cooling.- 5.2 Kinetic Theory and the Maxwell-Boltzmann Distribution.- 5.3 Random Walks.- 5.4 The Fokker-Planck Equation and Cooling Limits.- 5.5 Phase Space and Liouville's Theorem.- II Cooling & Trapping.- 6 Deceleration of an Atomic Beam.- 6.1 Introduction.- 6.2 Techniques of Beam Deceleration.- 6.2.1 Laser Frequency Sweep.- 6.2.2 Varying the Atomic Frequency: Magnetic Field Case.- 6.2.3 Varying the Atomic Frequency: Electric Field Case.- 6.2.4 Varying the Doppler Shift: Diffuse Light.- 6.2.5 Broadband Light.- 6.2.6 Rydberg Atoms.- 6.3 Measurements and Results.- 6.4 Further Considerations.- 6.4.1 Cooling During Deceleration.- 6.4.2 Non-Uniformity of Deceleration.- 6.4.3 Transverse Motion During Deceleration.- 6.4.4 Optical Pumping During Deceleration.- 7 Optical Molasses.- 7.1 Introduction.- 7.2 Low-Intensity Theory for a Two-Level Atom in One Dimension..- 7.3 Atomic Beam Collimation.- 7.3.1 Low-Intensity Case.- 7.3.2 Experiments in One and Two Dimensions.- 7.4 Experiments in Three-Dimensional Optical Molasses.- 8 Cooling Below the Doppler Limit.- 8.1 Introduction.- 8.2 Linear ? Linear Polarization Gradient Cooling.- 8.2.1 Light Shifts.- 8.2.2 Origin of the Damping Force.- 8.3 Magnetically Induced Laser Cooling.- 8.4 ?+-?- Polarization Gradient Cooling.- 8.5 Theory of Sub-Doppler Laser Cooling.- 8.6 Optical Molasses in Three Dimensions.- 8.7 The Limits of Laser Cooling.- 8.7.1 The Recoil Limit.- 8.7.2 Cooling Below the Recoil Limit.- 8.8 Sisyphus Cooling.- 8.9 Cooling in a Strong Magnetic Field.- 8.10 VSR and Polarization Gradients.- 9 The Dipole Force.- 9.1 Introduction.- 9.2 Evanescent Waves.- 9.3 Dipole Force in a Standing Wave: Optical Molasses at High Intensity.- 9.4 Atomic Motion Controlled by Two Frequencies.- 9.4.1 Introduction.- 9.4.2 Rectification of the Dipole Force.- 9.4.3 The Bichromatic Force.- 9.4.4 Beam Collimation and Slowing.- 10 Magnetic Trapping of Neutral Atoms.- 10.1 Introduction.- 10.2 Magnetic Traps.- 10.3 Classical Motion of Atoms in a Magnetic Quadrupole Trap.- 10.3.1 Simple Picture of Classical Motion in a Trap.- 10.3.2 Numerical Calculations of the Orbits.- 10.3.3 Early Experiments with Classical Motion.- 10.4 Quantum Motion in a Trap.- 10.4.1 Heuristic Calculations of the Quantum Motion of Magnetically Trapped Atoms.- 10.4.2 Three-Dimensional Quantum Calculations.- 10.4.3 Experiments in the Quantum Domain.- 11 Optical Traps for Neutral Atoms.- 11.1 Introduction.- 11.2 Dipole Force Optical Traps.- 11.2.1 Single-Beam Optical Traps for Two-Level Atoms.- 11.2.2 Hybrid Dipole Radiative Trap.- 11.2.3 Blue Detuned Optical Traps.- 11.2.4 Microscopic Optical Traps.- 11.3 Radiation Pressure Traps.- 11.4 Magneto-Optical Traps.- 11.4.1 Introduction.- 11.4.2 Cooling and Compressing Atoms in a MOT.- 11.4.3 Capturing Atoms in a MOT.- 11.4.4 Variations on the MOT Technique.- 12 Evaporative Cooling.- 12.1 Introduction.- 12.2 Basic Assumptions.- 12.3 The Simple Model.- 12.4 Speed and Limits of Evaporative Cooling.- 12.4.1 Boltzman...
 

Inhalt

III
3
IV
4
V
7
VI
9
VII
11
VIII
12
IX
14
X
17
LXXXII
146
LXXXIV
147
LXXXV
149
LXXXVI
150
LXXXVII
152
LXXXVIII
153
LXXXIX
155
XC
156

XII
20
XIII
23
XIV
24
XV
29
XVI
31
XVII
34
XIX
35
XX
39
XXI
43
XXII
45
XXIII
47
XXIV
50
XXVI
51
XXVII
52
XXVIII
53
XXIX
57
XXX
58
XXXI
61
XXXII
63
XXXIII
66
XXXIV
68
XXXV
71
XXXVI
73
XXXVII
74
XXXVIII
76
XXXIX
77
XLI
78
XLII
79
XLIV
80
XLV
83
XLVI
84
XLVII
85
XLVIII
86
XLIX
87
L
88
LI
90
LIII
92
LIV
95
LV
99
LVI
100
LVII
101
LVIII
102
LIX
104
LX
106
LXI
107
LXII
111
LXIII
113
LXIV
114
LXV
116
LXVI
118
LXVII
120
LXVIII
123
LXIX
124
LXX
126
LXXI
128
LXXII
129
LXXIII
131
LXXIV
135
LXXV
137
LXXVI
138
LXXVII
140
LXXIX
141
LXXX
143
LXXXI
145
XCII
158
XCIII
159
XCIV
162
XCV
165
XCVI
166
XCVII
167
XCVIII
171
XCIX
174
C
175
CI
177
CII
179
CIII
180
CIV
181
CV
184
CVI
185
CVII
186
CIX
188
CX
189
CXI
190
CXII
192
CXIII
193
CXIV
194
CXV
195
CXVI
199
CXVII
200
CXVIII
204
CXIX
207
CXXI
209
CXXII
213
CXXIII
218
CXXIV
219
CXXV
220
CXXVI
223
CXXVII
224
CXXVIII
225
CXXIX
226
CXXX
227
CXXXI
231
CXXXII
232
CXXXIII
235
CXXXIV
238
CXXXV
239
CXXXVI
241
CXXXVII
243
CXXXVIII
244
CXL
246
CXLI
248
CXLII
249
CXLIII
251
CXLIV
252
CXLV
254
CXLVI
255
CXLVII
258
CXLVIII
259
CXLIX
261
CL
263
CLI
265
CLII
269
CLIII
273
CLV
279
CLVII
291
CLVIII
317
Urheberrecht

Andere Ausgaben - Alle anzeigen

Häufige Begriffe und Wortgruppen

Beliebte Passagen

Seite 309 - Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, "Bloch oscillations of atoms in an optical potential,

Bibliografische Informationen